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Abstract

This report provides a comprehensive margin assessment of the ASME Section III, Division
5, Subsection HB, Subpart B rules for the design of high temperature reactor components
against load controlled stress limits. These rules, often called the Code primary load design
rules, provide protection against creep rupture and plastic collapse under steady conditions.
The method adopted here is to compare the deterministic ASME design life, according to
the primary load design rules, against the expected, statistical service life of the component,
considering creep rupture as the relevant failure mode. The report provides the design
margin of the ASME rules in terms of the probability of premature failure — the probability
that the component fails in service before reaching the ASME design life. To complete
this assessment, the report describes the development of a statistical creep life assessment
procedure accounting for variations in the component loading, material creep rate, and the
material rupture time. This includes a novel method for correlating creep rupture data
using a Gaussian process accounting for heat-to-heat variation in the Larson-Miller time-
temperature parameter. The report applies the complete margin assessment process to
quantify the design margin inherent in the ASME primary load design rules as a function of
temperature for relevant component geometries and materials. The overall conclusion is that
the ASME rules are conservative, providing designs with very small probability of premature
failure, but some optimization of the Code design rules is possible to provide a more uniform
design margin.
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1 Introduction

Section III, Division 5, Subsection HB, Subpart B provides design and construction rules for
Class A high temperature nuclear reactor structural components. The Code rules encompass
a variety of design conditions including:

1. Time independent failure caused by plastic collapse under steady load

2. Time dependent creep failure under steady load

3. Time independent and time dependent, cyclic excessive strain accumulation

4. Time dependent, cyclic creep-fatigue damage accumulation

5. Both time independent and time dependent buckling failure.

Of these design criteria, the Code combines the check against time-independent plastic
collapse and time-dependent creep failure under steady loads into a set of primary load design
rules. Historically, these primary load design rules are significant because they correspond to
traditional non-nuclear design practice and were used for component sizing and preliminary
design.

The primary load design rules are inherently an allowable stress criteria (ASC) approach
– the designer analyzes the component and compares the stresses to allowable stresses set
by the cognizant ASME Code Committees based on a careful evaluation of key material
data. The difference between the high temperature design approach and other ASC design
methods is that the stresses compared to the allowable stress values are the “load-controlled”
stresses. At least for high temperature design, these load controlled stresses mimic the
stationary creep stress distribution (at low temperatures they would mimic the fully-plastic
stress distribution). Historically it was difficult to determine the stationary creep stress
distribution directly and so the Code provides a load classification process for approximating
the stationary stresses given the results of a linear elastic stress analysis.

The Class A primary load design criteria require evaluating the component against two
allowable stresses: So which does not dependent on time (though generally based on 100,000
hour extrapolated creep properties) to replicate non-nuclear design practice and the time-
dependent Smt, based on time-dependent creep properties and, for short times, time indepen-
dent strength. The time-dependent Smt rules embed a key concept of the ASME Section III,
Division 5 design approach — the idea of a design life. This concept recognizes that degra-
dation and failure are inevitable for high temperature operation and so Code components
are designed to past a finite amount of time — the component design life.

Past studies and applications of the Code suggest the ASME Code rules produce safe,
perhaps overly-conservative component designs (c.f. [1] and related volumes). However, the
exact design margin inherent in the Code rules has not be quantified. This report describes
a comprehensive margin assessment of the Section III, Division 5, Subsection HB, Subpart
B Class A primary load design rules.

Given the importance of the design life concept and the fact that the Smt allowable
stress tends to control designs over the So allowable stress, this report focuses on the time-
dependent, Smt primary load design rules. The allowable stress Smt is defined as the lesser
of the time independent allowable stress Sm, defined as the lesser of
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1. From 67% to 90% (depending on the material) of the ASME material yield strength

2. 33% of the ASME material tensile strength

and the time-dependent allowable stress St, defined as the lesser of

1. The tensile strength at temperature divided by a factor of 1.1

2. 100% of the average stress to cause 1% total strain over the design life

3. 80% of the minimum stress to cause the initiation of the tertiary creep over the design
life

4. 67% of the minimum stress to cause creep rupture over the design life.

Code committee practice is to use an approximate 95% lower confidence bound on the data
(i.e. 1.65 times the standard error) to establish a minimum property.

Most future reactor components will operate in the regime where the time dependent part
of the allowable stress controls the design. Of the three criteria making up the allowable
stress St, only creep rupture is a real failure mechanism. The other two criteria provide
service limits and approximately guard against multiaxial failure. Therefore, the focus of
this report is determining the margin of the ASME rules against creep rupture under the
stationary creep stress distribution.

The concept of design margin is somewhat nebulous. The general idea of margin is the
difference between when a component would actually fail under service conditions versus the
limits provided by the design rules. For low temperature structural design, margin can often
be expressed as a load factor – i.e. the component could survive loads in excess of the design
loads by some quantifiable amount. However, given that creep failure is both inevitable and
time-dependent this concept does not translate to high temperature design.

Instead, we focus on the probability of premature failure F defined as the probability
that the component fails before it reaches the ASME design life. This concept embeds both
the design goal of the ASME Code rules — that the rules provide a reasonable assurance
that the service life will be in excess of the design life — and the time-dependent, inevitable
nature of failure under high temperature creep conditions.

Figure 1.1 illustrates the concept of the probability of premature failure. At a fixed
temperature, the concept treats the failure of the structure as a probability distribution over
time, with support [0,∞], expressed with a probability distribution function pf (t). The
event of interest is the failure of the component by creep rupture which, the ASME Code
approximates as the failure of the first material point (see discussion below). This probability
distribution is proper in that failure will eventually occur, i.e.∫ ∞

0

pf (t)dt = 1. (1.1)

Given this probability distribution, the probability of premature failure is the cumulative
probability up to the design life, i.e.

F =

∫ tdesign

0

pf (t)dt. (1.2)
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Figure 1.1: Illustration of the probability of premature failure (F ) on a probability distribu-
tion function (a) and a cumulative distribution function (b) describing component failure as
a function of time.

This measure mathematically expresses the chance that failure occurs in service before the
component reaches the target design life. Using F as a measure of design margin means that
smaller probabilities indicate a better, larger design margin. We could equally work with
the component reliability defined as

R = 1− F (1.3)

in which case larger values indicate greater margin. However, this work uses F consistently.
Assessing the margin of a particular component then requires two analyses: a determinis-

tic ASME design analysis to determine the maximum allowable component design life tdesign
and a statistical analysis based on creep rupture information to determine pf . From this
information the probability of premature failure follows from Eq. 1.2.

There are very few methods currently available for high temperature statistical design
against creep [2–4]. As such, this report describes a novel method developed at Argonne
National Laboratory to determine the probability distribution pf given the component ge-
ometry, statistics describing the expected component loads, material minimum creep rate
data, and material stress rupture data. This design approach, described in Chapter 2, is
comprehensive in that it can be applied to any component, including different combinations
of material, design life, and temperature. We use this process to assess the margin inher-
ent in the ASME rules over the complete temperature range for two key materials: 316H
stainless steel and Grade 91 steel.

The probabilistic design approach mirrors the ASME primary load rules in that it uses
the stationary creep stress distribution to evaluate the component against creep rupture
under the steady temperature distribution. This process neglects the complications included
in a full high temperature component structural evaluation which would include:
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1. The effects of varying load and temperature, both in damage accumulated during
transient creep and for cyclic load, including creep-fatigue damage.

2. Similarly, damage accumulates through the component transient temperature history,
not just at the steady state temperatures.

3. The residual service life left in the component after the initiation of creep damage. The
analysis here stops when the analysis indicates one point in the structure would reach
creep failure, as judged by indexing to creep rupture experimental data. However,
many component geometries have redundant load paths and so this time would only
correspond to the initiation of a creep crack. The time required to grow this creep
crack to cause some service failure, like leaking, or the collapse of the component is
residual component resistance not accounted for in either the ASME primary load
design approach or in the statistical analysis.

Despite these limitations, the statistical assessment approach developed here is adequate to
assess the ASME primary load design rules, as it mirrors the ASME deterministic design
method, and is simple enough to be tractable even for complex component geometries.
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2 Probabilistic Margin Assessment

2.1 Overview

This chapter presents a comprehensive probabilistic margin assessment of the ASME BPVC
primary load design rules for Class A components in Section III Division 5. This chapter
evaluates the design margin of several of the Class A materials for a simple, but represen-
tative, component geometry across the entire Division 5 elevated temperature range. The
margin assessment applies a probabilistic life prediction methodology developed in previous
work that accounts for the variability in material strength and deformation. A Gaussian
process fit captures the the strength variability, and a Monte Carlo approach accounts for
the variability of steady-state creep deformation parameters leading to variability in the
stresses developed in a component. A very efficient method based on the analogy between
viscous Stokes flow to steady-state creeping solid determines the steady-state stress distri-
bution under primary load for the Monte Carlo approach. This chapter evaluates the design
margin of several materials across a wide range of temperatures. The probabilistic margin
assessment presented in this chapter gives an insight into the design margin in the currently
deterministic ASME Section III, Division 5 primary load design rules for high temperature
nuclear components.

2.2 Rupture Life Distribution

The life distribution model begins with the Larson Miller Parameter (LMP), calibrated to a
large rupture database assembled for each of the materials evaluated. Equation (2.1) shows
the LMP for 316 Stainless steel (SS316H), and Eqn. (2.2) shows the LMP for Grade 91 steel
(modified 9Cr-1Mo):

LMP =
T

1000
(log10(t) + 20.54) (2.1)

LMP =
T

1000
(log10(t) + 33.1) (2.2)

where T is the temperature in kelvin (K) and t is the time in hours (h). Dividing the
LMP by a factor of 1000 provides data at a more numerically favorable scale. A least-square
regression to a linear correlation between the LMP and log stress over the full rupture data
set yields the LMP constants of 20.54 and 33.1, respectively. The values of the Larson Miller
C coefficient does change somewhat for polynomial correlations with a higher order, though
not enough to significantly alter the rupture model predictions. However, Chapter 3 corrects
this deficiency.

For each material, a Gaussian Process (GP) fit of the rupture data captures the un-
certainty in rupture life at each stress state. The GP fit makes use of GPy, a framework
available in Python as a module [5]. The GP fitting sets stresses as the independent variable,
the LMPs as the dependent variable, and uses a 1-dimensional Radial Basis Function (RBF)
kernel with an initial length scale of 10 and an initial variance of 4, based on the magnitude
of the rupture data. The likelihood and inference method are Gaussian, with a likelihood
variance of 0.05 and an exact inference method. Figure 2.1 shows the main script needed to
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perform a Gaussian process fit using the GPy module, for which X is the stresses and Y is
the LMP values.

print("GP fitting begin...")

rbf_kern = GPy.kern.RBF(input_dim = 1, lengthscale = 10, variance = 4)

gauss = GPy.likelihoods.Gaussian(variance = 0.05)

exact = GPy.inference.latent_function_inference.ExactGaussianInference()

m1 = Gpy.core.CP(X, Y, kernel = rbf_kern, likelihood = gauss,

inference_method = exact)

m1.optimize()

print("GP fitting completed!")

Figure 2.1: Code needed to run Gaussian Process fitting using the GPy module in Python.
The script remains the same for all materials.

Table 2.1 shows the final variance and length scale values of the RBF kernel after GPy
optimizes its values. The GP fit for each material used as training data any experimental
data with a rupture life less than 10,000 hours, which resulted in fitting 1,344 points for 316
stainless steel and 1,561 for Grade 91 steel. The analysis used the GPy package because it
can handle large datasets.

Table 2.1: Optimized values of RBF kernels used in GP fit

Material RBF variance RBF length scale
SS316H 352.57 1.54

Grade 91 1200.48 1.89

Another advantage behind the GPy module is its ability to predict the distribution of the
dependent variable given an unknown independent variable that was not originally among
the experimental dataset [6]. The module therefore was capable of extracting the mean and
the variance of the LMP at any queried stress using the command in Figure 2.2, therefore
allowing to extract the marginal probability P of the LMP at a specified rupture stress
P (LMP |σi), which is equivalent to the probability of the time to rupture at a specified
rupture stress P (t|σi) for a fixed temperature.

Figure 2.2: Command in GPy needed to extract the distribution of the LMP at any given
stress.
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Figure 2.3 shows, for each material, the GP fitted response, the 95% prediction intervals,
and the cumulative distribution function (CDF) of all LMPs at each stress state. These
responses plotted in red show that GP fitting captures the behavior of the material beyond
the experimental data, albeit the uncertainty of such a behavior increases the further we
query away from the data (dotted lines). In these images, The greyscale plot represents the
CDF value that comes from the conditional probability P (LMP |σi).

Figure 2.3: Cumulative Distribution Functions of the LMPs through the entire stress range
on (a) 316 Stainless Steel and (b) Grade 91 Steel. The blue scatterplots show the full
experimental data, and the red plotted lines show the GP fit mean and prediction bands.

2.3 Pressure Vessel Design

The primary load design rules in Section III Division 5, Subsection HB, Subpart B of the
ASME Boiler Pressure and Vessel Code (BPVC) [7] allows to design a simple cylindrical
pressure vessel for each material and temperature of interest, where each vessel has a design
life of 100,000h and an inner pressure of 1MPa. As a result, each temperature (and material)
will result in a different minimum vessel thickness tm that is a function of the allowable stress
Smt. Figure 2.4 shows the axisymmetric cylindrical geometry of the pressure vessel, as well
as the boundary conditions. The applied stress in the axial direction σz is the analytical
solution for a thin wall cylindrical vessel. This process results in a total of 15 different
geometries for each material, one for each temperature evaluated at each material

2.4 Pressure Vessel Stress Calculations

To perform a large number of simulations in a reduced amount of time, this work models the
steady state creep in the vessels as an incompressible Stokes flow with a stress-dependent
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Figure 2.4: Simple pressure vessel geometry (cross section) and boundary conditions.

viscosity [8, 9]. The Stokes flow solution yields the steady stress distribution in the ves-
sel in a matter of seconds, which is magnitudes faster when compared to the traditional
solid mechanics transient analysis, for which run times may last from minutes to hours. In
a steady-state Stokes flow, the power-law creep parameters determine the non-Newtonian
viscosity in the fluid.

This work models the Stokes problem with the Navier-Stokes module [10] in MOOSE
[11], using the Automatic Differentiation (AD) version of the module to calculate the Ja-
cobians automatically. The model applies the Pressure-Stabilized Petrov Garlekin (PSPG)
[10, 12] method to circumvent instabilities in the discretization of the Stokes equations. The
simulations here apply a stabilization factor of α = 0.01. The creep model implements the
traction form of the incompressible Navier-Stokes equations [10]:

ρ

(
∂u

∂t
+ u · ∇u

)
−∇ · σ =f (2.3)

∇ · u = 0 (2.4)

where u is the velocity, ρ is the (constant) fluid density, f is the body force per unit volume,
and σ is the total stress tensor. Assuming negligible inertial forces (i.e. the transient term
and the convective term) results in the Stokes equations:

∇ · σ =0 (2.5)

∇ · u =0 (2.6)

where this equation also omits the body force.

The stress tensor σ is defined as:

σ = −PI + τ (2.7)
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where P is the pressure, I is the identity tensor, and τ is the viscous stress tensor of the
material, defined as:

τ = Gγ̇ (2.8)

where γ̇ is the shear rate

γ̇ =
1

2

(
∇u+∇uT

)
(2.9)

and G is the viscosity of the material. A non-Newtonian viscosity describes power-law creep
with:

µ = G0γ̇
m−1
eff (2.10)

where G0 is the initial viscosity, m is the thickening/thinning exponent (note that at m = 1
the viscosity becomes Newtonian), and where γ̇eff is the von Mises effective shear rate of
the material [13], here in cylindrical coordinates:

γ̇eff =

√√√√2

3

(
2

[(
∂ur
∂r

)2

+

(
∂uz
∂z

)2

+
(ur
r

)2]
+

[
∂ur
∂z

+
∂uz
∂r

]2)
(2.11)

Where the subscript indicates the component of the velocity field in the indicated direction.
This work develops an AD material object within MOOSE to evaluate Equation 2.10 and
Equation 2.11.

Substituting Equation 2.10 into Equation 2.8, and assuming that the shear rates are
similar, the viscous stress is:

τeff = G0γ̇
m
eff (2.12)

with

τeff =

√
3

2
σ : σ (2.13)

Solving for the shear rate results in an equation analogous to the power-law definition:

γ̇eff = Aτneff (2.14)

where:
n = 1/m

A = G−n0

Therefore, the main input of the Stokes model becomes the power-law creep parameters A
and n, which in turn define the non-Newtonian viscosity parameters µ0 and n.

A transient structural simulation of a 316H steel cylindrical pressure vessel at 650◦C
verifies the applicability of the Stokes flow solution, in which the Stokes model takes takes
∼10 seconds to run, as opposed to the transient simulation which takes ∼20 minutes to
run. On both models the power-law parameters are A = 7.32 × 10−25 and n = 8.52. The
structural simulation spans 500,000 hours to approximate the steady state solution. The
structural solution approaches the steady state creep stress distribution only asymptotically,
but after 500,000 hours the stresses change only very slowly as a function of time. Figure
2.5a shows a comparison of the von Mises stresses that result from both models. Evaluating
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the von Mises stress described in Eq. (2.15) allows to relate the multiaxial behavior in the
component to the uniaxial rupture model.

σvm =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
(2.15)

where σ1, σ2, σ3 are the three principal stresses.

Figure 2.5: Comparison of the von Mises stresses from the Stokes model and the structural
model for a stainless steel 316 vessel.

2.5 Power-Law creep Parameters

To obtain the steady-state stress distributions in the pressure vessels, the finite element
(FE) model uses as input power-law creep parameters A and n from the steady-state creep
rate dependence. Experimental Minimum Creep Rate (MCR) data of both 316 Stainless
Steel and Grade 91 steel yield the mean µ and standard deviation σ of the power-law creep
parameters at each experimental temperature available. A linear correlation between the
observed parameter values and the temperature allows to evaluate the mean and the standard
deviation at temperatures not available in experimental data.

Figure 2.6 shows the linear correlations used to obtain the mean and standard deviation
of the power-law creep parameters at any temperature.

One exception is the standard deviation σ of the power-law creep parameters for 316H,
which does not have any significant trend for either A nor n (R < 0.5). Therefore, the
standard deviation at any temperature becomes the average value: 4.07 for n and 9.42 for
log10A.

For each temperature, the Gaussian distribution that results from the selected µ and σ
in Figure 2.6 generates random power law parameters, within 2 standard deviations from
the mean, that become the input to the Monte Carlo analysis needed to capture the stress
variability.
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Figure 2.6: Experimental and fitted correlations of the power-law creep distribution param-
eters (mean µ and standard deviation σ) for both 316 Stainless Steel and Grade 91 Steel

2.6 Stress Variability and Rupture Time Probability

The Monte Carlo (MC) method allows to evaluate the maximum von Mises stress variability
at each temperature. To apply this method for each temperature and each material, a
random sampling of the power-law creep parameters from the distributions described in
Section 2.5 generates between 500∼1000 steady-state Stokes models with unique power-law
creep parameter pairs per temperature and per material. Figure 2.7 shows an example of
the stress variability obtained from MC for a SS316H cylindrical pressure vessel designed to
live for 100,000 hours at 650◦C. On all MC simulations, the maximum von Mises stress is
always located at the inner wall of the vessel.

Figure 2.7: Histogram with fitted Gaussian distribution of the maximum stresses for all
Monte Carlo iterations in a SS316H vessel designed at 650 ◦C

The fitted Gaussian distribution describes the marginal probability of the maximum von
Mises stress P (σvm) in the vessel. The Gaussian distributions from MC converge at around
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250 samples for all materials and temperatures.
Obtaining the marginal probability allows the calculation of the rupture time probability

in Eq. (2.16) [14]:

pf (t) =
∑
i

P (t|(σvm)i)P (σvm) (2.16)

where P (t|(σvm)i) is the probability of the time to rupture at a certain stress (σvm)i. The GP
fit in Section 2.2 calculates this probability at each stress. Integrating the the probability
distribution function (PDF) that represents P (t) will yield the CDF that quantifies the
Probability of Failure (POF) at a certain time to rupture. Figure 2.8a shows the PDF
and Fig 2.8b shows the CDF obtained for a SS316H vessel at 650◦C that resulted from the
combination of the P (σvm) in Fig.2.7 and the P (t|(σvm)i) in Fig.2.3. Figure 2.8 also shows
the POF that is associated to the cylindrical pressure vessel design life of 100,000 hours
(105h). This POF value represents the probability that the pressure vessel fails before the
ASME design life.

Figure 2.8: (a) PDF and (b) CDF of the time to rupture for stainless steel 316 vessel at 650
◦C. The red line shows the design life of the vessel.

2.7 Margin Assessment for ASME design rules

Following the procedure described previously for the entire ASME design temperature range
resulted in the rupture time POFs in Table 2.2 and Table 2.3. The temperatures range every
20◦C from 540◦C to 800◦C for 316 Stainless steel, and from from 380◦C to 640◦C for Grade
91 Steel. The ranges also include the maximum temperatures where experimental data is
available for both materials: 816◦C for 316 stainless steel and 650◦C for Grade 91 steel.

The labels on the first columns relate to the labels in Fig.2.9 where they highlight, for
each temperature, the equivalent LMP value and the average von Mises stress from the
MC-based Gaussian distribution. Therefore, Fig.2.9 shows the distance between the final
stresses in a cylindrical pressure vessel designed via ASME design rules (yellow scatterplot),
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Table 2.2: Temperatures and resulting POFs for 316 Stainless Steel

Label Temperature POF
(a) 540 4.10E-09
(b) 560 3.00E-07
(c) 580 1.80E-08
(d) 600 1.40E-10
(e) 620 7.60E-11
(f) 640 1.30E-10
(g) 660 1.80E-10
(h) 680 1.70E-10
(i) 700 2.40E-11
(j) 720 4.30E-11
(k) 740 4.00E-12
(l) 760 4.70E-10
(m) 780 4.00E-07
(n) 800 2.10E-04
(o) 816 9.70E-03

the experimental rupture data (blue scatterplot), and the fitted rupture response (red solid
line).

2.8 Discussion

This chapter performs a probabilistic margin assessment of the ASME Section III, Division
5 Primary Load Design Rules by applying an uncertainty-based life assessment on a series
of cylindrical pressure vessels designed at different temperatures and materials. This assess-
ment is based on experimental data, for both 316H and Grade 91 steel, that describes the
uncertainty in both rupture and creep deformation. The rupture life probability calculation
combines the stress distributions obtained via MC with the stress-dependent rupture time
distribution obtained via GP fitting. The MC method relies on Stokes flow modeling to
enable solving a large number of models in a short amount of time.

Figure 2.10 plots the probability of premature failure for the two materials as a function
of temperature on a log scale to better display the data. This plot illustrates several trends:

1. The probabilities of premature failure are quite small for both materials. Though an
adequate margin should be determined through broader consultation with the design
community, regulators, and the public, the margin against rupture assessed here is
quite significant. Recall from Chapter 1 that this probability is not a yearly frequency,
i.e. a probability per year, but rather a cumulative probability over the design life.

2. Generally speaking, the design margins for the two materials considered here are sim-
ilar. The ASME allowable stresses are consistently defined and so we should expect
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Table 2.3: Temperatures and resulting POFs for Grade 91 Steel

Label Temperature POF
(a) 380 7.00E-29
(b) 400 1.60E-21
(c) 420 9.30E-15
(d) 440 1.40E-09
(e) 460 9.80E-07
(f) 480 2.30E-04
(g) 500 2.40E-07
(h) 520 3.50E-06
(i) 540 2.60E-07
(j) 560 1.60E-08
(k) 580 8.60E-09
(l) 600 1.70E-08
(m) 620 1.90E-10
(n) 640 2.30E-11
(o) 650 3.00E-11

there to be no significant differences in materials with comparably-sized experimental
datasets. Both 316H and Grade 91 are well-established materials with large rupture
databases and so we should expect similar design margins.

3. However, there are significant variations in the design margin as a function of temper-
ature.

• At very low temperatures near the bottom of the creep range the design margin
tends to increase (the probability of premature failure decrease) because time-
independent failure supplants time-dependent failure by creep rupture. This anal-
ysis focused on the creep range and so only considered creep rupture. Therefore,
as the temperature decreases the failure probabilities considered here will tend to
decrease towards zero as creep rupture becomes essentially impossible. If the lower
temperature range is of interest for a particular design then this analysis could
be repeated including time-independent failure statistics basic on the observed
variation in the material yield and tensile strengths.

• The margin decreases significantly for 316H above 800◦ C. This may be related
to the bias in the rupture database to more reasonable component temperatures,
as the material has very little rupture life above 800◦ C.

• For both materials there is some variation in the computed reliability even away
from the extreme low and high ends of the temperature range considered in this
analysis. These variations may be related to the difference between the ASME
allowable stress Smt, which considers rupture, tertiary creep, and strain accumula-
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Figure 2.9: Rupture data along with a yellow scatterplot that shows the mean stress and
mean LMP at each evaluated temperature in Table 2.2 and Table 2.3.

tion metrics, versus the rupture-only statistical analysis used here. The very small
probabilities under consideration here may also contribute to these variations –
it would require a far larger rupture database to sample probabilities below 10−4

than exists currently, even for these two well studied materials.
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Figure 2.10: Probabilities from Tables 2.2 and 2.3 plotted as a function of temperature.
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3 Improved Gaussian Process Modeling of Creep Rupture Data

3.1 Overview

The previous chapter uses Gaussian process regression to provide a statistical model linking
the (log) stress to the Larson-Miller parameter, which in turn encapsulates the effects of
temperature and time. The Larson-Miller parameter is

LMP = T (log10 tR + C) (3.1)

with T the absolute temperature, tR the rupture time, and C a material-dependent param-
eter.

For the margin analysis of the Division 5 primary load rules we fixed the value of C to
the value that provides the best log-linear correlation between the Larson-Miller parameter
and the log stress, both calculated from the experimental rupture database. This procedure
has two drawbacks:

1. It means that our new approach based on non-parametric Gaussian process regression
still partly relies on the traditional polynomial regression. The value of C will de-
pend on the order of the polynomial regression, introducing an unwanted additional
hyperparameter.

2. This approach does not account for batch-to-batch variation in the value of the Larson-
Miller C parameter. In actuality this parameter can vary not only between materials
but also between different heats and product forms for a single material.

This chapter derives a statistical calibration process based on Gaussian process regression
that allows the Larson-Miller parameter C to be a random variable. This new regression
model overcomes both of the deficiencies of the previous approach.

3.2 Gaussian Process Regression

A covariance function C (xi,xj) = cov [f (xi) , f (xj)] fully-defines the standard zero-mean
Gaussian process [15]. This covariance function defines the stochastic function f(x) over
the data x by defining the covariance between two data points xi and xj. The covariance
function (for the zero-mean process) can be viewed as the kernel of a convolution integral
and so is often called the kernel of the Gaussian process.

The covariance function will include hyperparameters that must be fit to the data. A
common regression strategy is to find the maximum likelihood estimate of these parameters
— the values of the parameters that maximize the likelihood of the model predictions versus
the observed data. Statistical inference methods can also include white noise superimposed
on the base model representing random measurement errors or other uncertainties. This
makes the regression problem to find the parameter values that maximizes the marginal
likelihood of

y = f (x) + ε (3.2)

where ε represents white noise with mean of zero and variance of σ2
n. The log likelihood of

a given dataset is [15]

ln p (y|x, θ) = −1

2
yiC

−1
ij yj −

1

2
ln |Cij| −

N

2
ln (2π) (3.3)
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Figure 3.1: Example of Gaussian process regression.

where θ is the set of hyperparameters, Cij is the matrix containing the values of the covariance
function evaluated at each pair of data points xi and xj and N is the number of data points.
Maximizing this function with respect to the kernel parameters provides the best (most
likely) model.

As an example, consider the common case of a radial basis function kernel for scalar data,
including the white noise directly in the definition of the kernel

C (xi, xj) = σ2
f exp

(
−(xi − xj)2

2l2

)
+ σ2

nδij (3.4)

This kernel has three hyperparameters — the process variance σ2
f , the noise variance σ2

n,
and the process length scale l. Figure reffig:ex-gp illustrates Gaussian process regression by
finding the parameters that maximize the likelihood of the data, generated by the model

y = A sin (2πfx) + 2Bxc (3.5)

where A, f , B, and c are all normal random variables with mean of 1.0 and scale 0.075. In
generating the data we further add white noise to the observations with scale 0.01. The best
fit Gaussian process regression line accurately captures the average response of the data.

In addition to providing non-parametric regression, statistical estimates of the uncertainty
in the regression are an inherent part of Gaussian process models. Given a division of input
data into the training and prediction sets, i.e.

x =

[
xtraining
xprediction

]
(3.6)

the predicted outputs yprediction have a multivariate normal distribution with expected value

E[yprediction] = Cprediction,training · C−1training,training · ytraining (3.7)

and covariance

cov[yprediction] = Cprediction,prediction+Cprediction,training·C−1training,training·Ctraining,prediction. (3.8)
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So the model provides both the average (best) deterministic regression as well as the statis-
tics needed to construct prediction bounds. Figure 3.1 further illustrates a 95% prediction
interval on the regression.

3.3 Gaussian Process Model for Creep Rupture

Given the advantages of Gaussian process regression we apply it in Chapter 2 to predicting
and extrapolating creep rupture test data using the Larson-Miller parameter to combine the
effects of temperature and time. The regression problem can be posed as finding a regression
model that correlates the log stress to the Larson-Miller parameter:

log10 stress = f (LMP ) + ε (3.9)

where we again include white noise on the observations.
The challenge in directly applying the GP regression as described above is that the

Larson-Miller parameter depends on C which we now wish to represent as an additional
random variable. Fortunately, there is a analytic solution, described as a kernel function, for
the statistics of Gaussian process with a radial basis (squared exponential) kernel with un-
certain inputs, provided the inputs are normally distributed [16, 17]. Applying this solution
to Eq. 3.9 yields

C (xi, xj) = σ2
f

exp
[
−1

2
(Ti (µC + log10 tR,i)− Tj (µC + log10 tR,j))

2 /
(
l +
(
T 2
i + T 2

j

)
σ2
C

)]√
1 +

(
T 2
i + T 2

j

)
σ2
C/l

+δijσ
2
n

(3.10)
where µC is the mean of the Larson-Miller C parameter, σ2

C is the variance of the Larson-
Miller C parameter, and the input data xi is a tuple of the experimental temperature Ti and
rupture time tR,i. This new kernel has five hyperparameters — l, σf , µC , σ2

C , and σn — to
infer using the process outlined in the previous section. The new GP model accounts for batch
variation in the C parameter described by a normal distribution with mean µC and variance
σC , experimental noise with σn, and the non-parametric regression of the Larson-Miller
parameter against the rupture stress with l and σf . This new regression model improves
on the fixed-C version used in Chapter 2 and has advantages over classical Larson-Miller
polynomial regression as well.

3.4 Examples

This section illustrates the advantages of the new, variable-C GP regression technique to
interpolate and extrapolate creep rupture data by comparing the new approach to tradi-
tional Larson-Miller polynomial regression using creep rupture databases for several high
temperature materials.

To compare the approaches we fit both a GP and a classical regression model using the
same data. Sections 3.2 and 3.3 describe the approach used to fit the GP model. The classical
model is polynomial regression over the database, using the value of C that provides the
best regression model as measured by the coefficient of determination. The classical process
requires selecting the polynomial order for the regression. To avoid overfitting, for each
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Polynomial Gaussian process
MRE Inside 95% MRE Inside 95%

316H 0.09920 95.07% 0.09531 95.18%
Grade 91 0.06143 94.91% 0.06116 94.87%

A617 0.1701 95.68% 0.1601 96.25%
A740H 0.0464 94.33% 0.0358 92.67%

Table 3.1: Summary of the 10-fold cross-validation test, comparing the GP and polynomial
regression approaches.

material we use either a linear model if the Pearson coefficient R for the linear regression
satisfies R2 >= 0.97 . Otherwise we use a quadratic model.

To test the robustness of the two approaches we assess the models using a 10-fold cross
validation. We repeat the regression process 10 times for each model, for each material. Each
time we reserve 1/10 of the rupture data and calibrate the model against the remaining 9/10.
Then, the process records the accuracy of the regression by calculating the mean relative
error against the remaining 1/10 of the dataset as well as the percentage of the validation
data that falls within a 95% prediction bound based on the calibration dataset. We repeat
this process 10 times, so that each chunk of the rupture data serves as the validation set
once. Finally, the process reports the averaged error metrics over the 10 separate trials.

Table 3.1 reports the results of this comparison for four materials: 316H stainless steel,
Grade 91 steel, the Ni-based alloy 617, and the Ni-based alloy 740H. The first two materials
are well-studied materials with a significant rupture database. Alloy 617 is another well-
studied alloy, but with a comparatively smaller rupture database than 316H and Grade 91.
Finally, Alloy 740H is a newer material with a smaller rupture database. Table 3.1 provides
the results of the comparison.

Figures 3.2-3.5 visually compare the regression approaches. Each figure plots the rupture
data using the best-fit, mean value of C to calculate the Larson-Miller parameter, the mean
prediction, and a 95% prediction interval for each regression model, for each material. Each
figure shows the classical and GP approaches side-by-side, instead of on a single plot, because
the two approaches can result in different best, mean values of C, which in turn shift the
plotted rupture data.

Overall, the Gaussian process regression produces a more accurate model with lower rel-
ative error than the traditional Larson-Miller correlation. The reason can be seen in Figures
3.2, 3.4, and 3.5. A low order polynomial does not accurately describe the general trends in
the Larson-Miller data for these materials and so the non-parametric GP regression better
correlates the data. The improved correlation does not substantially diminish the ability of
the model to predict future test data, i.e. the percentage of validation data points inside the
95% prediction interval is about the same for both the polynomial and GP methods.

3.5 Summary

This chapter demonstrates the benefits of the new Gaussian process method over both tra-
ditional Larson-Miller polynomial regression and the fixed-C Gaussian process used in the
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Figure 3.2: Comparison between classical Larson-Miller polynomial regression and the Gaus-
sian process regression model for 316H.
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Figure 3.3: Comparison between classical Larson-Miller polynomial regression and the Gaus-
sian process regression model for Grade 91.

previous chapter. We recommend the variable-C process be used in future statistical analy-
ses of creep rupture. The GP correlation could also compete with traditional Larson-Miller
regression, including the more sophisticated region-split [18] and batch-C variants actually
used by ASME to set design creep rupture correlations. The primary advantage of the GP
approach is that it accounts for all the effects captured by the current ASME method with-
out requiring the user to select the order of polynomial regression, the number and location
of region splits, and the heat of each material sample. Moreover, the GP regression is non-
polynomial and so the more flexible, non-parametric form may simply fit the data better
than a polynomial correlation.
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Figure 3.4: Comparison between classical Larson-Miller polynomial regression and the Gaus-
sian process regression model for Alloy 617.
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Figure 3.5: Comparison between classical Larson-Miller polynomial regression and the Gaus-
sian process regression model for Alloy 740H.
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4 Conclusions

4.1 Meaningful Probabilities

The probabilities assessed here are quite small — significantly less than 10−4 for most tem-
peratures. It is worth considering if values this small are meaningful relative to the size of
the underlying experimental databases.

One advantage of the probabilistic assessment method described here is that it is a
consistent tool for combining small probabilities. Consider calculating the probability of
failure as a product of independent events describing the component loading, the minimum
creep rate, and the rupture time:

pf = p(t = t′) =

∫
L

∫
σ

p(t′|σ)p(σ|L)p(L)dσdL (4.1)

This equation connects the loading statistics L, the stress state σ, controlled by the minimum
creep rate, and the failure time t, assuming that the three distributions are independent.
Even if the individual probabilities are very small, the total probability describing the com-
ponent service life is still meaningful, again given the assumption that the distributions are
independent.

However, consider a simple case where the loading is well-characterized, there are no
significant thermal stresses, and the structure does not have a redundant load path, meaning
the creep deformation statistics do not significantly affect the component stress distribution.
In this case, the probability of premature failure is controlled by the creep rupture statistics.
Table 4.1 lists the size of the creep rupture database for the four materials considered in
this report. Even the largest databases only have a few thousand tests. This means that
for probabilities less than 10−4 it is unlikely that a single experiment actually samples the
relevant tail of the rupture distribution. For this case then, there may be no significant
difference between probabilities smaller than 10−4 as they all express a previously unobserved
occurrence.

4.2 Summary

This report describes a comprehensive margin assessment procedure applied to assess the
design margin of the Section III, Division 5, Subsection HB, Subpart B primary load design
rules for Class A components. The assessment calculates the probability that the component
fails via creep rupture before the ASME design life using the steady-state stress distribution.
This process mirrors the ASME primary load assessment procedure. However, the approach

Material Number of rupture tests
316H 1764

Grade 91 2047
A617 348

A740H 54

Table 4.1: The size of the rupture database for the four materials considered in this report.
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described here is fully statistical, accounting for variations in the component loading, creep
deformation, and creep failure properties. We apply the margin assessment approach to
provide a comprehensive, temperature-dependent margin assessment for the ASME primary
load rules for two materials: 316H stainless steel and Grade 91 steel. The key conclusions of
the margin assessment study are:

1. The Code design rules produce components with a substantial design margin against
creep rupture. With one exception (316H at the maximum ASME allowable temper-
ature) the probability of premature rupture remains substantially less than 10−4 over
the full design life. While further investigation into 316H Code rupture data is worth-
while, this exception is not significant for design as in practice 816◦ C is too hot to
viably operate a 316H component.

2. Given the size of the creep rupture testing databases available for the Code mate-
rials probabilities below 10−4 likely cannot be reasonably distinguished as the entire
experimental database would not contain a single specimen sampling the event of inter-
est. As such, any chance of premature failure for properly-design ASME components
would exist in the ill-characterized tail of the failure distribution representing as-yet
unobserved events.

3. For the temperature range most relevant for future reactor designs, away from very high
and very low temperature use cases, the ASME design margin is roughly consistent
between the two materials.

4. The design margin against rupture increases rapidly at lower temperatures. However,
this simply reflects the decreased likelihood of creep failure in the temperature regime
where time-independent failure modes will begin to become significant.

5. At least for 316H, the margin against rupture decreases rapidly close to the material’s
maximum use temperature. This could be attributed to gaps in the underlying creep
rupture database. The 316H allowable stresses will be under discussion at ASME with
a view to extending the maximum design life to 500,000 hours and so this issue can be
discussed during that process.

6. Within the design range, the margin against rupture is not constant as a function of
temperature. The full ASME primary load allowable stresses include tertiary creep
and creep deformation criteria and so this variation may be caused by regions in
time/temperature space controlled by properties other than rupture. However, the
design method could be optimized to provide a more uniform margin.

With the possible exception of the 316H allowable stresses above 800◦ C, all these issues
can be characterized as design Code optimizations and not deficiencies. The 316H allowable
stresses in this temperature range are a low priority as the maximum use temperature for
the material is 816◦ C, mean the reduced margin region only covers 16◦ C in a regime where
the material has very low creep rupture strength.

The probabilistic assessment approach developed here is complete, but a few incremental
improvements are possible:
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1. The component analysis should be repeated with the improved Gaussian process model
allowing for heat-to-heat variations in the Larson-Miller C parameter. While this
should be done for consistency, in practice there would be very little change in the final
calculated probabilities of failure as the fixed-C and stochastic-C rupture correlations
are still very similar.

2. The statistical minimum creep rate model could be improved. The current approach
attempts to correlate isothermal estimates of the statistics describing the prefactor
and stress exponent of a power law creep model, taken from log-linear regression mod-
els against the minimum creep rate data. A better approach would be to reuse the
Gaussian process model for rupture developed in Chapter 3 by correlating the stress
to the temperature and 1/ε̇min, which has units of time. The only change required to
the Stokes flow model would be to adopt a compatible nonlinear viscosity model. This
approach might better correlate the data, but would also provide a cleaner temperature-
dependent statistical model.

3. The current work deliberately only considers creep rupture failure. As described in
Chapter 1, creep rupture is the only actual failure model among the ASME allowable
stress criteria. However, a fully-consistent margin assessment would consider all three
time dependent design criteria used in construction the ASME allowable stress: rup-
ture, time-to-tertiary creep, and time to 1% strain. The current method could easily
be extended to cover these additional criteria by developing statistical models for the
time-to-tertiary and time to 1% strain data.

There is also one more significant defect in our current approach — it assumes that
each of the loading, deformation, and failure probability distributions describe independent
events. Decoupling the loading from the material creep rate and creep rupture time is
reasonable, as there is no a prior reason why the component loading and material properties
should be correlated. However, there is almost certainly a correlation between the minimum
creep rate and the material creep strength. The challenges in qualifying this correlation
are that (1) often abstracted data does not consistently identify the material heat for both
the creep rate and creep life measurements and (2) there are significantly fewer minimum
creep rate measurements than rupture time measurements, as creep rate data requires an
instrumented creep test. However, an effort aimed at reconstructing the data required to
examine the correlation between creep rate and strength would be worthwhile, as it could
improve statistical service life predictions of the type discussed here.

Either the current or improved approaches could be applied to assess the margin for
the other Class A ASME materials or for a wider variety of components. There are no
obstacles to completing these assessments, except potentially in reconstructing the rupture
and deformation database for 2.25Cr-1Mo and 304H. For larger components requiring 3D
analysis the Monte Carlo structural analysis would be computationally expensive but it
would be reasonably achievable even on moderately sized cluster computers.

Finally, the statistical life assessment method developed here could form the basis of a
statistical design approach. The current assessment method could be used for probabilistic
design. However, the Monte Carlo structural analysis is likely too computationally expensive
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and time-consuming to use in engineering practice except for either very simple geometries
or for a limited number of critically important components.

A more practical engineering approach would be to replace the statistical structural analy-
sis with a factored deterministic analysis, in the spirit of a Load and Resistance Factor Design
method. One challenge in developing such an approach is that for high temperature design
there are three critical probability distributions — applied loads, material deformation, and
material resistance — versus the two distributions – applied load and material resistance
– embedded in current LRFD approach like the method described in the AISC Steel Con-
struction Manual. A second challenge would be developing the required load, deformation,
and resistance factors and accounting for temperature dependence; temperature-dependent
is another challenge not addressed by current LRFD methods. A large database of realistic,
representative statistical creep analyses would be invaluable in constructing the design fac-
tors, meaning analyses used for a broader margin assessment of the current Code could be
reused in developing future probabilistic creep design methods.

This report does not address the question of determining what an adequate design margin
for ASME Class A components should be. We advocate for a particular measurement of the
design margin, the probability of premature failure, demonstrate that the current Code rules
produce components with premature failure probabilities generally much less than 10−4, and
suggest that probabilities less than 10−4 may not have significant meaning, given the size
of the available creep rupture test databases. However, determining an acceptable design
margin is beyond the scope of this report as it is a broader social question that should involve
the cognizant ASME Code Committees, regulators, and future plant owner/operators.
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